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Specialized Teachers General Student

We propose a novel approach to
enhance domain generalization
by transferring knowledge from
an ensemble of teachers trained
on different source domains.

Dataset and Architecture Distillation Method

« We build AgriSeg, a multi-domain dataset for crop .

segmentation, to have a real-world benchmark for
our method.

Inspired by [1], we train each teacher as a single-
domain expert.

« We generate the teacher’s output by averaging the
« Agriseg contains 1l synthetic and real domains with output logits of the single-domain experts.
different lighting and background conditions and

more than 46,500 samples. « Thatyields a more informative mask which can be

further smoothened using a temperature factor.

« We use the LR-ASPP real-time segmentation model. . . ]
 Softmax is applied along the flattened spatial

dimension instead of channels as suggested by [2].
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« We compare our method with other state-of-the-art DG algorithms and report the Intersection-over-Union (in %).
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Our method extends the generalization of sesgmentation models to unseen real-world scenarios through knowledge distillation.
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