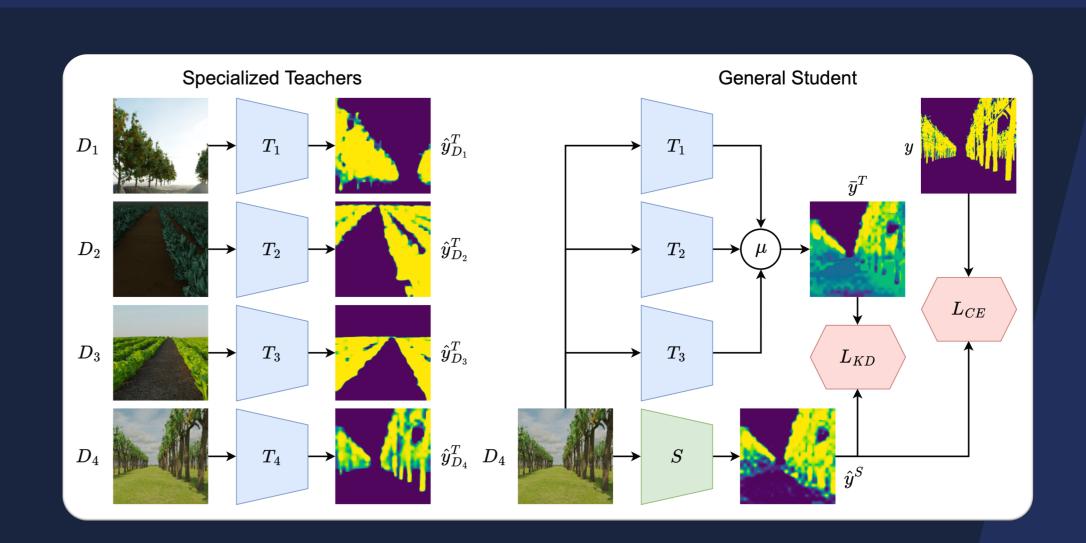
## Domain Generalization for Crop Segmentation with Knowledge Distillation

Simone Angarano, Mauro Martini, Alessandro Navone, Marcello Chiaberge

PIC4SeR - Politecnico di Torino Interdepartmental Centre for Service Robotics, Turin, Italy

We propose a novel approach to enhance domain generalization by transferring knowledge from an ensemble of teachers trained on different source domains.



## **Dataset and Architecture**

- We build **AgriSeg**, a **multi-domain** dataset for crop segmentation, to have a **real-world** benchmark for our method.
- Agriseg contains 11 synthetic and real domains with different lighting and background conditions and more than 46,500 samples.
- We use the **LR-ASPP** real-time segmentation model.



The AgriSeg dataset (models and rendering)

## **Distillation Method**

- Inspired by [1], we train each teacher as a singledomain expert.
- We generate the teacher's output by averaging the output logits of the single-domain experts.
- That yields a more **informative** mask which can be further smoothened using a **temperature** factor.
- Softmax is applied along the flattened spatial dimension instead of channels as suggested by [2].

$$L = L_{CE}(y, \hat{y}^S) + \lambda L_{KD}(\bar{y}^T, \hat{y}^S), \qquad \bar{y}^T = \frac{1}{D} \sum_{d=1}^D \hat{y}_d^T$$

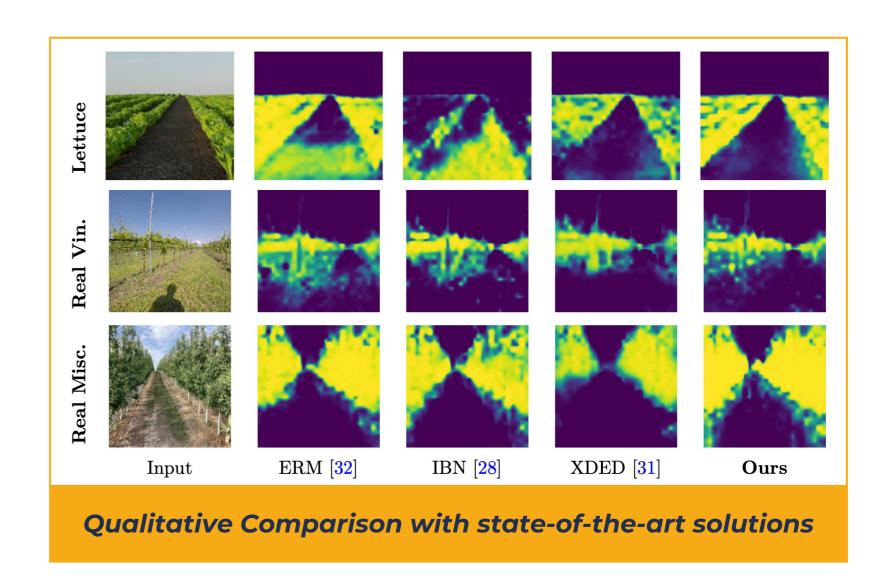
$$L_{KD} = \frac{\tau^2}{C} \sum_{c=1}^C \sum_{i=1}^{W \cdot H} \phi(\bar{y}_{c,i}^T) \cdot \log\left(\frac{\phi(\bar{y}_{c,i}^T)}{\phi(\hat{y}_{c,i}^S)}\right), \qquad \phi(y) = \frac{\exp\left(\frac{y}{\tau}\right)}{\sum_{i=1}^{W \cdot H} \exp\left(\frac{y_i}{\tau}\right)}$$

**Proposed training loss** 

## Results

• We compare our method with other state-of-the-art DG algorithms and report the Intersection-over-Union (in %).

| Leave-one-out<br>DG evaluation | Method      | Generic Tree      | 2 Chard          | Lettuce                     | Vineyard                     | Average           |
|--------------------------------|-------------|-------------------|------------------|-----------------------------|------------------------------|-------------------|
|                                | ERM[32]     | $38.38 \pm 12.10$ | $83.22 \pm 5.8$  | $50  33.45 \pm 13.34$       | $46.69 \pm 9.69$             | $50.44 \pm 10.15$ |
|                                | IBN[28]     | $26.92 \pm 12.61$ | $83.52 \pm 1.9$  | $97  33.14 \pm 22.82$       | $47.72 \pm 2.96$             | $47.83 \pm 10.09$ |
|                                | ISW[22]     | $65.72 \pm 8.47$  | $86.05 \pm 3.8$  | $87 	 25.72 \pm 12.89$      | $51.34 \pm 2.36$             | $57.21 \pm 6.00$  |
|                                | pAdaIN[29]  | $42.27 \pm 12.80$ | $79.93 \pm 1.0$  | $65 	 13.22 \pm 8.30$       | $45.73 \pm 4.81$             | $45.29 \pm 6.89$  |
|                                | XDED[31]    | $38.79 \pm 17.26$ | $84.35 \pm 5.3$  | 11 $29.99 \pm 14.80$        | $47.63 \pm 6.27$             | $50.19\pm10.86$   |
|                                | WildNet[23] | $45.76\pm2.17$    | $82.45\pm0.7$    | 78 $22.20 \pm 0.73$         | $59.78 \pm 0.48$             | $52.55 \pm 1.04$  |
| D                              | Ours        | $50.02 \pm 06.80$ | $86.17 \pm 1.7$  | 79 $58.01 \pm 12.74$        | $\underline{53.26 \pm 3.59}$ | $61.86 \pm 6.23$  |
|                                |             |                   |                  |                             |                              |                   |
| 5 <i>t</i>                     | Method      | Pear Tree         | Zucchini         | Real Vineyard               | Real Misc.                   | Average           |
| Sim2Real test<br>domains       | ERM[32]     | $78.37 \pm 2.51$  | $86.51 \pm 1.71$ | $42.76 \pm 11.38$           | $64.40 \pm 3.10$             | $68.01 \pm 4.68$  |
|                                | IBN[28]     | $73.80 \pm 4.21$  | $86.21 \pm 3.23$ | $42.23 \pm 11.32$           | $63.36 \pm 9.47$             | $66.40 \pm 7.13$  |
|                                | ISW[22]     | $73.49 \pm 1.81$  | $87.47 \pm 0.77$ | $33.80 \pm 23.85$           | $48.36 \pm 7.30$             | $60.78 \pm 8.43$  |
|                                | pAdaIN[29]  | $74.53 \pm 2.53$  | $81.83 \pm 4.82$ | $41.16\pm10.23$             | $60.32 \pm 9.09$             | $64.46 \pm 6.67$  |
|                                | XDED[31]    | $76.82 \pm 3.02$  | $86.34 \pm 1.07$ | $46.38\pm10.07$             | $57.24 \pm 8.89$             | $66.69 \pm 5.76$  |
|                                | WildNet[23] | $75.31 \pm 3.50$  | $81.88 \pm 2.37$ | $\overline{31.11 \pm 1.35}$ | $46.57 \pm 3.09$             | $58.72 \pm 2.58$  |
| S                              | Ours        | $80.18 \pm 2.65$  | $86.25 \pm 1.42$ | $52.01 \pm 4.68$            | $66.69 \pm 3.18$             | $71.28 \pm 2.98$  |



Our method extends the generalization of segmentation models to unseen real-world scenarios through knowledge distillation.





Corresponding Author

